

Optical Fiber Sources Design in OptiSystem Software

Ahmad Atieh, Jawad Mirza, Salman Ghafoor

7 Capella Court Ottawa, ON, Canada K2E 8A7 +1 (613) 224-4700 www.optiwave.com

Introduction

- Optical Fiber Lasers Review
- Cascaded Fiber Laser for Pumping Holmium-Doped Fiber Amplifier
 - Enable the use of commercial 980nm and 1480nm laser pumps
- Modeling and Simulation using OptiSystem Software
- Results and Discussions
- Live Demonstration
- Q&A

Introduction

Bandwidth hungry services

- Voice-over-IP
- High-definition TV
- IP-TV
- Education-on-demand
- Video-on-demand
- Video conferencing
- Interactive video gaming
- Video surveillance

Optiwave SIGN SOFTWARE **Transmission Systems Capacity Progress**

- Available degrees of data transmission scaled to (λ, Pol. Mux. & digital coherent)
- Reached capacity limits in SMF
- SDM improves capacity with cost per bit economy

Exploring 2µm region

T. Mizuno, Y. Miyamoto, "High-capacity dense space division multiplexing transmission," Optical Fiber Technology, 35,108-117 (2017)

Optical Fiber Capacity Definition

12Capacity scaling in optical fibers AWGN $C = \log_2 (1 + SNR) \times 2 \times B \times M$ Spectral efficiency [bits/s/Hz] 500 km 104000 km C Capacity 2 Parallel SNR Signal-to-noise ratio systems ×2 Polarization multiplexing 12.3 dB SNR improvement Number of wavelength В channels (Bandwidth) 10152025303540Number of spatial paths SNR [dB]

Exploiting a new dimension: Space

C. Okonkwo "Maximising Capacity Through Space Division Multiplexing" CLEO2021

2 µm Region Enabling Technologies

•Lasers (fiber lasers)

Amplifiers – Holmium-doped fiber amplifier (HDFA)

- Passive components
- Modulators

Optiwave Laser (light amplification with stimulated emission and radiation)

- Gain medium between two reflectors
 - When gain > loss = lasing
- Semiconductor Laser Packaging
 - 14 pins butterfly package
 - 3 pins TO can
 - TOSA (transmitter optical subassembly) Transceivers

- Ring lasers
- Figure-8 lasers
- •Loop mirror lasers
- Cascaded fiber lasers for HDFA

Ring Lasers

Passive Mode locking [2,3]

Figure 1 Diagram for semiconductor fiber ring laser (SFRL) incorporating S-band SOA (S-SOA), isolator (ISO), polarization controller (PC), single mode fiber (SMF), polarization maintaining fiber (PMF), 3-dB optical coupler (OC), and tuneable band-pass filter (TBF)

Figure-8 Lasers [4]

11

Loop mirror Lasers [5]

Optiwave Cascaded Fiber Lasers for HDFA [6]

Fig. 4. Schematic of the proposed pumping scheme, WDM: Wavelength division multiplexer coupler, EDF: Erbium-doped fiber, ISO: Isolator, TOF: Tunable optical filter, TDF: Thulium-doped fiber, HDF: Holmium-doped fiber OPM: Optical power meter, OSA: Optical spectrum analyzer.

Pumps for HDF are expensive and not widely available

Optiwave EDF Absorption & Emission Spectra and Energy Levels

Optiwave TDF Absorption & Emission Spectra and Energy Levels

Optiwave HDF Absorption & Emission Spectra and Energy Levels

EDF Optimization

Fig. 2. SE versus (a) EDF length plot (b) Er³⁺ concentration plot.

1/

TDF Optimization

Fig. 3. SE versus (a) TDF length plot (b) Tm³⁺ concentration plot.

Cascaded Lasers Output

Fig. 6. Plots of lasing wavelengths at (a) 1.62 µm (b) 1.95 µm.

HDF Optimization

Fig. 7. Gain versus (a) HDF length (b) doping concentration of Ho³⁺.

Simulation Parameters

Table 2

Important simulation parameters.

Parameter	Value
Pump power	5 W
Pump wavelength	1.48 μm
Core radius of EDF, TDF, HDF	2.25 μm, 2.25 μm, 1.3 μm
Doping radius of EDF, TDF, HDF	1.2 μm, 1.3 μm, 1.3 μm
Numerical aperture of EDF, TDF, HDF	0.26, 0.3, 0.3
Bandwidth of TOFs	0.01 nm
Insertion and return losses of TOFs	0 and 65 dB
Cross relaxation coefficient of HDF (K_{2101})	$2 \times 10^{-24} \text{ m}^{-3} \text{ s}^{-1}$
Cross relaxation coefficient of HDF (K_{1012})	$40 \times 10^{-24} \text{ m}^{-3} \text{ s}^{-1}$
Homogeneous upconversion coefficient of HDF (K_{3101})	$0.78 \times 10^{-21} \text{ m}^{-3} \text{ s}^{-1}$
Homogeneous upconversion coefficient of HDF (K_{1013})	$2.3 \times 10^{-24} \text{ m}^{-3} \text{ s}^{-1}$
Ions per cluster	2

Optiwave Effect of Coupling ration on Lasers Output

Fig. 4. Schematic of the proposed pumping scheme, WDM: Wavelength division multiplexer coupler, EDF: Erbium-doped fiber, ISO: Isolator, TOF: Tunable optical filter, TDF: Thulium-doped fiber, HDF: Holmium-doped fiber OPM: Optical power meter, OSA: Optical spectrum analyzer.

Effect of Coupling ration on Lasers Output

ptiwave

GN SOFTWARE

Fig. 5. Tuning of cavities for different coupling ratios (a) EDF (b) TDF.

HDFA Performance – I

Fig. 8. Gain versus input signal wavelength plots of the HDFA (a) as a function of signal power without PIQ (b) with PIQ.

HDFA Performance – II

Fig. 9. Input signal wavelength versus (a) ASE plots as a function of pump power (b) NF plots as a function of input signal power.

HDFA Performance – III

Table 3

Comparison of the important results of the proposed work with results of the past related studies.

Study	Gain	NF	HDF length	Pump type	No. of pumps & pumping stages
[7]	54 dB	7 dB	3 m	TDFL	1, 2
[14]	41 dB	10 dB	3.5 m	TDFL	1, 1
[15]	28 dB	9.5 dB	7 m	TDFL	1, 1
[16]	43 dB	-	4 m	TDFL	2, 2
[17]	33 dB	-	-	YDFL	1, 1
[18]	49 dB	6.5 dB	5.5 m	Laser diode	1, 2
[19]	55 dB	-	7.3 m	TDFL	1, 2
[Proposed]	52.5 dB	5.6 dB	13.6 m	Laser diode	1, 1

Holmium-doped fiber amplifier

Published Paper

Novel pumping scheme of Holmium doped fiber amplifiers operating around 2um using 1.48um	lasers exploiting cascaded fiber lasers.pdf - Adobe Acrobat Reader DC (64-bit)	-	- 0	×
Home Tools Novel pumping sch ×		?	Sig	jn In
		Ċ	2 🖂	Q
			^	0
Optik	- International Journal for Light and Electron Optics 262 (2022) 169238			Po
	Contents lists available at ScienceDirect			₽
Optik -	International Journal for Light and Electron			Po
	Optics			P
ELSEVIER	journal nomepage. www.elsevier.com/locate/ljieo			B
Original research article				č٥
Novel pumping schem	ne of Holmium doped fiber amplifiers			
lasers	in using 1.46 µm fasers exploiting cascaded fiber			1
Jawad Mirza ^a , Ahmad Atie	h ^b , Benish Kanwal ^c , Salman Ghafoor ^{d,*}			B
^a SEECS Photonics Research Group, Islamabad ^b Optiwave Systems Inc., Ottawa, Ontario, Ca ^c Electrical Engineering Department. Mirrur U	l, Pakistan nada niversity of Science and Technology (MUST). Mirmur (AJK). Pakistan			
^d School of Electrical Engineering and Compute (NUST), H-12, Islamabad, Pakistan	er Science (SEECS), National University of Sciences and Technology			<u>Cu</u>
ARTICLE INFO	ABSTRACT			C
Keywords: Fiber amplifier Pumping scheme Cascaded fiber lasers	The optical communication window around 2 μ m is attracting significant research attention for future optical communication systems as an extension to the C-, L-, and U-bands. One of the research topics in the 2 μ m region is optical amplifiers. Holmium-doped fiber amplifier			Ko

.

(HDFA) is a suitable candidate for amplifying signals in this region. However, the pump laser

for Holmium-doped fiber (HDF) is expensive and not widely available. In this work, we propose

. .

|→

Live Demo

Optiwave Software Download

\blacksquare \textcircled{a} Community Forums - Fc \times + \checkmark			- 0 ×
\leftarrow \rightarrow \circlearrowright \land \land https://optiwave.com/forum-login/?redirect_to=https:	//optiwave.com?evaluations	×	亡 & 臣 …
<i>Optiwave</i> Photonic Software	What's New Products Validation	Downloads Support Login 🔎	
Home > Forums > Forum Login	Forum Login	30-Day Evaluations OptiPerformer OptiSystem Labs Free OptiFDTD 32-bit WDM Phasar Freeware	
	Username:	All Other Downloads	
	Login with LinkedIn in Register Log In		
https://optiwave.com/?evaluations	Keep me signed in Lost your password?		

Optiwave Effect of Coupling ration on Lasers Output

EDFL

HDFA

1480nm

- •Cascaded fiber lasers are used to enable pumping HDF with 980nm and 1480nm lasers
- •The emission spectrum of the 1st stage doped-fiber coincides with the absorption spectrum of the 2nd stage doped-fiber
- The cascaded fiber lasers and HDFA parameters are optimized for best performance
- Experimental validation is under consideration
- US provisional patent application was filed

References

[1] Shaymaa Riyadh Tahhan, Ahmad Atieh, Mehedi Hasan, Trevor Hall, "Characterization and Experimental Verification of Actively Mode-Locked Erbium Doped Fiber Laser Utilizing Ring Cavity," tm - technisches messen, Published by Walter De Gruyter GmbH, orcid.org/0000-0002-2770-6404, Aug 2020.

[2] H. Awad, A. Atieh, and T. Hall, "Polarization Dependent Gain and State Of Polarization effects on linewidth of semiconductor fiber ring lasers", *Microwave and Optical Technol. Lett*, Vol. 50, No. 1, pp. 31, 2008.

[3] Hazem Awad, Ahmad Atieh, Trevor J. Hall, "Linewidth control in semiconductor optical amplifier based fibre ring lasers", Proceedings of the SPIE, Vol. 6343, pp 63430Q-6341-9, Photonics North'2006, Quebec City, Canada, Sep 2006.

[4] A. K. Atieh, S. Tchouragoulov, "Subpicosecond soliton pulse generation in the L-band using passive mode-locked figure eight fiber laser", In *Technical Digest CLEO*'2000, paper CWE5, pp. 261-262, San Francisco, California, USA, 2000.

[5] A. K. Atieh, "WDM Fiber Laser Source Using Loop Mirror Configuration", *Microwave and Optical Technol. Lett.*, Vol. 28, No. 3, pp. 187-189, 2001.

 [6] Jawad Mirza, Salman Ghafoor, Ahmad Atieh, "Novel pumping scheme of Holmium doped fiber amplifiers operating around 2um using 1.48um lasers exploiting cascaded fiber lasers," Optik - International Journal for Light and Electron Optics 262 (2022) 169238

Thank You

ahmad.atieh@optiwave.com

support@optiwave.com

