Additional Output Data

The additional output data is saved in selected files in the **Additional Output Data** dialog box. If you use the loop-like simulations from the **Scan Parameters** option, the resulting output files are additionally numbered according to the loop iteration numbers.

To open the **Additional Output Data** dialog box, from the **Simulation** menu, select **Additional Output Data** (see Figure 183).

Additional Output Data	×
2D 3D Isotropic 3D Anisotropic	
Relative Power vs. Distance Power Overlap Integral Normalization Overlap Integral With Global C Local C External Field	
Power In Output Waveguides Normalization Global C Local C Intensity In Waveguide Boundaries	
ASCII Export Complex Field (end of propagation) Refractive Index Distribution (end of propagation) C:\Program Files\Optiwave Software\OptiB Define Cuts Cut Type: Field Refractive Index X Out Z Out Z Out	
Mesh Point: No. Mesh Point Cut Position Cut Type 1 Add -> 0 1 -30 Field Position: Remove - - - -30 - - - -	
OK Cancel Help	

Figure 183 Additional Output Data Files dialog box-2D tab

Additional Output Parameters—2D tab

Relative Power vs. Distance

Contains the relative power versus the distance of propagation. The power is normalized to its starting value. The power is defined as the sum of intensity values, where the summation runs over all transverse mesh points.

Default file extension: *****.**rpd**

Power Overlap Integral

Contains the power overlap integral versus distance of propagation. The power overlap is an integral of two fields. One of the fields is the propagating field and the second is the reference field. The reference field can be the input field or any external field discretized on the same mesh. The overlap integral is normalized to the product of the two corresponding field powers. The integrals and powers are measured within the limits of the transverse mesh.

The overlap integral is also multiplied by a correction factor. The correction factor takes into account the power loss due to the radiation outside the numerical window. The overlap integral can be normalized locally or globally. For local normalization there is no correction for the radiation loss (the correction factor is equal to 1). For global normalization, the factor is equal to the relative power. Note that the relative power correction is distance-dependent.

Default file extension: *.poi

- **Normalization** •Global: Includes the loss of power by radiation through the boundaries at the top and bottom on the calculation window.
- **Local:** Normalization in the integral that used the actual waveguide intensity within the waveguide boundaries.
- **Overlap Integral With** •Input Field: Starting field at the input plane defined and calculated for the first propagation step.
- External Field: A field from an ASCII file; the file extension is .f2d or .f3d.

For more information, see "Overlap Integral" on page 709.

Power in Output Waveguides

Contains the power in output waveguides (at the end of propagation). The power in each waveguide may be specified in two ways. One way is to define it as the overlap integral with the fundamental waveguide mode. A second way is to define it as the intensity integral within the waveguide boundaries. The power in output waveguide is normalized locally or globally. The local normalization does not take into account the power loss due to the radiation outside the mesh. The global normalization introduces a radiation correction factor equal to the relative power.

Default file extension: *.piw

Normalization •Global: Includes the loss of power by radiation through the boundaries at the top and bottom on the calculation window.

- **Local:** Normalization in the integral that used the actual waveguide intensity within the waveguide boundaries.
- **Output Type** •Power Overlap With Fundamental Mode: Produces power overlap of the current BPM field with the fundamental mode of a studied waveguide in this position, where the overlap integral is calculated.
- Intensity In Waveguide Boundaries: Considers the intensity of the field at the boundaries of the waveguide.

ASCII Export

Complex Field (end of propagation) check box Contains the complex field amplitude at the end of propagation. The field is stored for all mesh points at the end of the propagation distance. Click the **Browse** to select a location to save the data.

Default file extension: *.f2d

Note: This check box must be selected for data entry.

Refractive Index Distribution (end of propagation) check box Contains the refractive index distribution at Z=Length of Wafer.

Default file extension: *.rid

Note: This check box must be selected for data entry.

Define Cuts

Allows you to define cross-sections of 2D or 3D data.

Cut Type There are two types of cut data that can be stored: Optical Fields and Refractive Index. Both types of cuts can be stored during a simulation.

- **Field:** The optical fields are stored.
- Refractive Index: The refractive index cuts are stored.

X Cut Tab

The X Cut tab allows you to save cross-sections of field and refractive index (see Figure 184).

Define Cuts	Cut Type: (• Field C Ref	ractive Index
X Cut Z Cut			
Mesh Point: 5 Add> Position: -4.9198396793 Remove	No. Mesh Poir 0 3 1 4 2 5 - - - - - -	t Cut Position -4.95991 -4.93987 -4.91983	Cut Type Field Field Field

Figure 184 X Cut Tab

For the X Cut, the data section is controlled by the mesh point number. Enter that number in **Mesh Point** For your reference, the cut position in microns is also displayed. Once you entered the Mesh Point number, click **Add/Apply** to put the cut on the list below.

If the **Use Default File Name** is selected, the program automatically generates cut file names adding the mesh point numbers to the names. You may delete a cut file from the list by selecting it and clicking **Remove**.

Cut Type defines what kind of data is exported for this cut.

- **Field:** Optical Field data is stored.
- **Refractive Index:** Refractive index data is stored.

Mesh Point Wafer mesh coordinate at which you take the X cut.

Add: Click to add the mesh point to the Mesh Point list.

Remove: Click to remove a mesh point from the Mesh Point list.

Position: Position in microns in the wafer based on the number of mesh points.

No. Number of mesh points.

Cut Position Cut based on the X coordinate.

Z Cut tab

The Z Cut tab is active only for 3D output data files. The propagation distance controls the data section. You may select the cut distance manually, followed by pressing Add button. Another option is to automatically generate a selected number of evenly-spaced slices from Z=0 to the currently displayed distance (see Figure 185).

- Define Cuts	Cut Type:	⊙ Field ◯ Re	fractive Index
X Cut Z Cut			
Distance: 4 Add> Remove	No. 0 1	Distance 2 4	Cut Type Field Field
Auto Generate Number of Slices:			

Figure 185 Z Cut Tab

Cut Type Cut Type can be Field or Refractive Index. These define what kind of data will be exported for this cut.

- Field: Optical field data is stored.
- Refractive Index: Refractive index data is stored.

Distance Z-coordinate of the cut.

Add button Click to add the distance to the Distance list.

Remove button Click to remove a distance from the Distance list.

Auto Generate The slices specified by the Number of slices will be generated automatically.

Generate

Click to generate the slices according to data entered in the **Number of Slices** edit box.

No.

Number of mesh points.

Additional Output Parameters—3D Isotropic tab

The difference between the **2D** tab and the **3D Isotropic** tab is that 3D Isotropic contains a **Y Cut** tab, in addition to the **X Cut** and **Z Cut** tabs (see Figure 186).

Refer to Additional Output Parameters-2D tab for more information.

Define Cuts	С	ut Type: 💿	Field C Refi	ractive Index
Mesh Point: 3 Add> Position: -4.896 Remove	No. 0 1 2	Mesh Point 1 2 3	Cut Position -5 -4.948 -4.896	Cut Type Field Field Field

Figure 186 YCut tab

Cut Type defines what kind of data is exported for this cut.

- Field: Optical field data is stored.
- **Refractive Index:** Refractive index data is stored.

Distance Y-coordinate of the cut.

Add click to add the mesh point to the Mesh Point list.

Remove click to remove a mesh point to the Mesh Point list.

Auto Generate slices specified by the Number of slices are generated automatically.

Generate

Click to generate the slices according to data in the Number of Slices.

No.

Number of mesh points.

Additional Output Parameters—3D Anisotropic tab

The difference between the **2D** tab and the **3D Anisotropic** tab is that 3D Anisotropic contains a **Y Cut** tab, in addition to the **X Cut** and **Z Cut** tabs (see Figure 186).

Refer to Additional Output Parameters—2D tab for more information.

Figure 187 Additional Output Data Files dialog box—3D Anisotropic tab

2D 3D Isotropic 3	D Anisotropic			
Belative Power vs	Distance			
Power Overlap Inte	egral			
- Normalization -	n ⊢Overlap Integ	ral With-		
📀 Global	Input Field	±		
C Local	C External P	ield		
Power In Output W	/aveguides			
- Normalization	Output Type-			
Global	Power 0v	erlap With	n Fundamental Mo	ode
O Local	O Intensity I	n Wavegi	uide Boundaries	
Define Cuts	:Cut]	Cut Type	: O Field •	Refractive Index
Distance:		No	Distance	
	Add>	110.	Distance	Carrypo
0				
0	Remove			
Auto Generate	Remove			
Auto Generate	Remove			
Auto Generate Number of Slices:	Remove Generate			
Auto Generate	Remove Generate			
Auto Generate Number of Slices:	Generate			

Cut Type defines what kind of data is exported for this cut.

- Field: Optical field data is stored.
- Refractive Index: Refractive index data is stored.

Distance Y-coordinate of the cut.

Add click to add the mesh point to the Mesh Point list.

Remove click to remove a mesh point to the Mesh Point list.

Auto Generate slices specified by the Number of slices are generated automatically.

Generate

Click to generate the slices according to data in the Number of Slices.

No.

Number of mesh points.

